武侯區(qū)石羊場街高三數(shù)學(xué)補習(xí)班怎么收費
sin^2()=(1-cos(2))/2=versin(2)/2
精品學(xué)習(xí)高中頻道為各位同學(xué)整理了高三數(shù)學(xué)知識點總結(jié),供大家參考學(xué)習(xí)。更多各科知識點請關(guān)注新查字典數(shù)學(xué)網(wǎng)高中頻道。
1. 對于集合,一定要抓住集合的代表元素,及元素的確定性、互異性、無序性。
中元素各表示什么?
注重借助于數(shù)軸和文氏圖解集合問題。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性質(zhì):
(3)德摩根定律:
4. 你會用補集思想解決問題嗎?(排除法、間接法)
的取值范圍。
6. 命題的四種形式及其相互關(guān)系是什么?
(互為逆否關(guān)系的命題是等價命題。)
原命題與逆否命題同真、同假;逆命題與否命題同真同假。
7. 對映射的概念了解嗎?映射f:AB,是否注意到A中元素的任意性和B中與之對應(yīng)元素的唯一性,哪幾種對應(yīng)能構(gòu)成映射?
(一對一,多對一,允許B中有元素無原象。)
8. 函數(shù)的三要素是什么?如何比較兩個函數(shù)是否相同?
(定義域、對應(yīng)法則、值域)
9. 求函數(shù)的定義域有哪些常見類型?
10. 如何求復(fù)合函數(shù)的定義域?
義域是_____________。
11. 求一個函數(shù)的解析式或一個函數(shù)的反函數(shù)時,注明函數(shù)的定義域了嗎?
12. 反函數(shù)存在的條件是什么?
(一一對應(yīng)函數(shù))
求反函數(shù)的步驟掌握了嗎?
(①反解x;②互換x、y;③注明定義域)
13. 反函數(shù)的性質(zhì)有哪些?
①互為反函數(shù)的圖象關(guān)于直線y=x對稱;
②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;
14. 如何用定義證明函數(shù)的單調(diào)性?
(取值、作差、判正負)
如何判斷復(fù)合函數(shù)的單調(diào)性?
)
15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?
值是( )
A. 0B. 1C. 2D. 3
a的最大值為3)
16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么?
(f(x)定義域關(guān)于原點對稱)
注意如下結(jié)論:
(1)在公共定義域內(nèi):兩個奇函數(shù)的乘積是偶函數(shù);兩個偶函數(shù)的乘積是偶函數(shù);一個偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。
17. 你熟悉周期函數(shù)的定義嗎?
函數(shù),T是一個周期。)
如:
18. 你掌握常用的圖象變換了嗎?
注意如下翻折變換:
19. 你熟練掌握常用函數(shù)的圖象和性質(zhì)了嗎?
的雙曲線。
應(yīng)用:①三個二次(二次函數(shù)、二次方程、二次不等式)的關(guān)系二次方程
②求閉區(qū)間[m,n]上的最值。
③求區(qū)間定(動),對稱軸動(定)的最值問題。
④一元二次方程根的分布問題。
由圖象記性質(zhì)! (注意底數(shù)的限定!)
利用它的單調(diào)性求最值與利用均值不等式求最值的區(qū)別是什么?
20. 你在基本運算上常出現(xiàn)錯誤嗎?
21. 如何解抽象函數(shù)問題?
(賦值法、結(jié)構(gòu)變換法)
22. 掌握求函數(shù)值域的常用方法了嗎?
(二次函數(shù)法(配方法),反函數(shù)法,換元法,均值定理法,判別式法,利用函數(shù)單調(diào)性法,導(dǎo)數(shù)法等。)
如求下列函數(shù)的最值:
23. 你記得弧度的定義嗎?能寫出圓心角為,半徑為R的弧長公式和扇形面積公式嗎?
24. 熟記三角函數(shù)的定義,單位圓中三角函數(shù)線的定義
25. 你能迅速畫出正弦、余弦、正切函數(shù)的圖象嗎?并由圖象寫出單調(diào)區(qū)間、對稱點、對稱軸嗎?
(x,y)作圖象。
27. 在三角函數(shù)中求一個角時要注意兩個方面先求出某一個三角函數(shù)值,再判定角的范圍。
28. 在解含有正、余弦函數(shù)的問題時,你注意(到)運用函數(shù)的有界性了嗎?
29. 熟練掌握三角函數(shù)圖象變換了嗎?
(平移變換、伸縮變換)
平移公式:
圖象?
30. 熟練掌握同角三角函數(shù)關(guān)系和誘導(dǎo)公式了嗎?
奇、偶指k取奇、偶數(shù)。
A. 正值或負值B. 負值C. 非負值D. 正值
31. 熟練掌握兩角和、差、倍、降冪公式及其逆向應(yīng)用了嗎?
理解公式之間的聯(lián)系:
應(yīng)用以上公式對三角函數(shù)式化簡。(化簡要求:項數(shù)最少、函數(shù)種類最少,分母中不含三角函數(shù),能求值,盡可能求值。)
具體方法:
(2)名的變換:化弦或化切
(3)次數(shù)的變換:升、降冪公式
(4)形的變換:統(tǒng)一函數(shù)形式,注意運用代數(shù)運算。
32. 正、余弦定理的各種表達形式你還記得嗎?如何實現(xiàn)邊、角轉(zhuǎn)化,而解斜三角形?
(應(yīng)用:已知兩邊一夾角求第三邊;已知三邊求角。)
33. 用反三角函數(shù)表示角時要注意角的范圍。
34. 不等式的性質(zhì)有哪些?
答案:C
35. 利用均值不等式:
值?(一正、二定、三相等)
注意如下結(jié)論:
36. 不等式證明的基本方法都掌握了嗎?
(比較法、分析法、綜合法、數(shù)學(xué)歸納法等)
并注意簡單放縮法的應(yīng)用。
(移項通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。)
38. 用穿軸法解高次不等式奇穿,偶切,從最大根的右上方開始
39. 解含有參數(shù)的不等式要注意對字母參數(shù)的討論
40. 對含有兩個絕對值的不等式如何去解?
(找零點,分段討論,去掉絕對值符號,最后取各段的并集。)
,,成都戴氏教育
同步輔導(dǎo)課: 【適合學(xué)生】基礎(chǔ)弱,聽不懂,跟不上;聽得懂,不會用,用不好 【上課頻率】每周1-2次課,長期輔導(dǎo),平時輔導(dǎo)效果較好 【預(yù)期效果】同步學(xué)習(xí),梳理每周疑難點,打牢基礎(chǔ) 基礎(chǔ)強化課: 【適合學(xué)生】考試不理想,過往知識不扎實 【上課頻率】每月15次課,在假期輔導(dǎo)效果較好 【預(yù)期效果】集中梳理上學(xué)期核心知識點,補齊之前知識短板 專項輔導(dǎo)課: 【適合學(xué)生】清楚學(xué)習(xí)問題,專項補齊短板,突破學(xué)習(xí)瓶頸 【上課頻率】每月5-10次課,短期按模塊集中 【預(yù)期效果】深入掌握知識點,靈活運用,攻克疑難點
證明:
(按不等號方向放縮)
42. 不等式恒成立問題,常用的處理方式是什么?(可轉(zhuǎn)化為最值問題,或△問題)
43. 等差數(shù)列的定義與性質(zhì)
0的二次函數(shù))
項,即:
44. 等比數(shù)列的定義與性質(zhì)
46. 你熟悉求數(shù)列通項公式的常用方法嗎?
例如:(1)求差(商)法
解:
[練習(xí)]
(2)疊乘法
解:
(3)等差型遞推公式
[練習(xí)]
(4)等比型遞推公式
[練習(xí)]
(5)倒數(shù)法
47. 你熟悉求數(shù)列前n項和的常用方法嗎?
例如:(1)裂項法:把數(shù)列各項拆成兩項或多項之和,使之出現(xiàn)成對互為相反數(shù)的項。
解:
[練習(xí)]
(2)錯位相減法:
(3)倒序相加法:把數(shù)列的各項順序倒寫,再與原來順序的數(shù)列相加。
[練習(xí)]
48. 你知道儲蓄、貸款問題嗎?
△零存整取儲蓄(單利)本利和計算模型:
若每期存入本金p元,每期利率為r,n期后,本利和為:
△若按復(fù)利,如貸款問題按揭貸款的每期還款計算模型(按揭貸款分期等額歸還本息的借款種類)
若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。如果每期利率為r(按復(fù)利),那么每期應(yīng)還x元,滿足
p貸款數(shù),r利率,n還款期數(shù)
49. 解排列、組合問題的依據(jù)是:分類相加,分步相乘,有序排列,無序組合。
(2)排列:從n個不同元素中,任取m(mn)個元素,按照一定的順序排成一
(3)組合:從n個不同元素中任取m(mn)個元素并組成一組,叫做從n個不
50. 解排列與組合問題的規(guī)律是:
相鄰問題捆綁法;相間隔問題插空法;定位問題優(yōu)先法;多元問題分類法;至多至少問題間接法;相同元素分組可采用隔板法,數(shù)量不大時可以逐一排出結(jié)果。
如:學(xué)號為1,2,3,4的四名學(xué)生的考試成績
則這四位同學(xué)考試成績的所有可能情況是( )
A. 24B. 15C. 12D. 10
解析:可分成兩類:
(2)中間兩個分數(shù)相等
相同兩數(shù)分別取90,91,92,對應(yīng)的排列可以數(shù)出來,分別有3,4,3種,有10種。
共有5 10=15(種)情況
51. 二項式定理
性質(zhì):
(3)最值:n為偶數(shù)時,n 1為奇數(shù),中間一項的二項式系數(shù)最大且為第
表示)
52. 你對隨機事件之間的關(guān)系熟悉嗎?
的和(并)。
(5)互斥事件(互不相容事件):A與B不能同時發(fā)生叫做A、B互斥。
(6)對立事件(互逆事件):
(7)獨立事件:A發(fā)生與否對B發(fā)生的概率沒有影響,這樣的兩個事件叫做相互獨立事件。
53. 對某一事件概率的求法:
分清所求的是:(1)等可能事件的概率(常采用排列組合的方法,即
(5)如果在一次試驗中A發(fā)生的概率是p,那么在n次獨立重復(fù)試驗中A恰好發(fā)生
如:設(shè)10件產(chǎn)品中有4件次品,6件正品,求下列事件的概率。
(1)從中任取2件都是次品;
(2)從中任取5件恰有2件次品;
(3)從中有放回地任取3件至少有2件次品;
解析:有放回地抽取3次(每次抽1件),n=103
而至少有2件次品為恰有2次品和三件都是次品
(4)從中依次取5件恰有2件次品。
解析:∵一件一件抽取(有順序)
分清(1)、(2)是組合問題,(3)是可重復(fù)排列問題,(4)是無重復(fù)排列問題。
54. 抽樣方法主要有:簡單隨機抽樣(抽簽法、隨機數(shù)表法)常常用于總體個數(shù)較少時,它的特征是從總體中逐個抽取;系統(tǒng)抽樣,常用于總體個數(shù)較多時,它的主要特征是均衡成若干部分,每部分只取一個;分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個個體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。
55. 對總體分布的估計用樣本的頻率作為總體的概率,用樣本的期望(平均值)和方差去估計總體的期望和方差。
要熟悉樣本頻率直方圖的作法:
(2)決定組距和組數(shù);
(3)決定分點;
(4)列頻率分布表;
(5)畫頻率直方圖。
如:從10名女生與5名男生中選6名學(xué)生參加比賽,如果按性別分層隨機抽樣,則組成此參賽隊的概率為____________。
56. 你對向量的有關(guān)概念清楚嗎?
(1)向量既有大小又有方向的量。
在此規(guī)定下向量可以在平面(或空間)平行移動而不改變。
(6)并線向量(平行向量)方向相同或相反的向量。
規(guī)定零向量與任意向量平行。
(7)向量的加、減法如圖:
(8)平面向量基本定理(向量的分解定理)
的一組基底。
(9)向量的坐標表示
表示。
57. 平面向量的數(shù)量積
數(shù)量積的幾何意義:
(2)數(shù)量積的運算法則
[練習(xí)]
答案:
答案:2
答案:
58. 線段的定比分點
※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎?
59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎?
平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化:
線面平行的判高三數(shù)學(xué)知識點總結(jié)
在上面文章中,我們學(xué)大專家已經(jīng)為大家?guī)砹?,高三?shù)學(xué)知識點。只要你能夠把這些難點知識學(xué)習(xí)牢固,就可以在高考輕松取得數(shù)學(xué)高分。